

Class: XI	DEPARTMENT OF SCIENCE 2025– 2026 SUBJECT: CHEMISTRY	Date: 09/05/2025
Worksheet: 02	CHAPTER 2: STRUCTURE OF ATOM	Note: A4 FILE FORMAT
CLASS & SEC:	NAME OF THE STUDENT:	ROLL NO.

Multiple Choice Questions:

1	What is the	mavimum	number a	of a	lectrone	that	can	evict	in a	cubchell?
1.	what is the	maximum	number	or e	lectrons	mai	can	exist	ша	subshen?

- a. $2n^2$
- b. 4l + 2
- c. 2l + 1
- d. 4l 2
- 2. For an electron with principal quantum number 3, how many orbitals are possible?
 - a. 5
 - b. 7
 - c. 9
 - d. 3
- 3. How can an electron transition to a higher Bohr orbit?
 - a. By emission of electromagnetic radiation
 - b. Without any energy exchange
 - c. By absorption of electromagnetic radiation of specific frequency
 - d. By absorption of any electromagnetic radiation
- 4. Which quantum number identifies two electrons in the same orbital?
 - a. Principal quantum number
 - b. Angular momentum quantum number
 - c. Magnetic quantum number
 - d. Spin quantum number
- 5. Which statement about orbital nodes is correct?
 - a. Angular nodes equal principal quantum number
 - b. Total nodes = n 1
 - c. Radial nodes = n + 1 1
 - d. Angular nodes = n + 1

- 6. The Heisenberg Uncertainty Principle is most applicable to:
 - a. Macroscopic objects
 - b. Subatomic particles
 - c. Planetary motion
 - d. Sound waves
- 7. An orbital where n = 4 and l = 2 is designated as:
 - a. 4s
 - b. 4p
 - c. 4d
 - d. 4f
- 8. Which of the following quantum numbers determines the shape of an orbital?
- a. Principal quantum number (n)
- b. Azimuthal quantum number (*l*)
- c. Magnetic quantum number (ml)
- d. Spin quantum number (ms)
- 9. The energy of an electron in the hydrogen atom is primarily determined by which quantum number?
 - a. *n*
 - b. *l*
 - c. ml
 - d. ms
 - e.
- 10. Which of the following statements about the Bohr model of the atom is incorrect?
 - a. Electrons move in circular orbits around the nucleus.
 - b. Each orbit corresponds to a specific energy level.
 - c. Electrons can exist between energy levels.
 - d. The energy of an electron is quantized.
- 11. Assertion: In an atom, electrons in the same orbital must have opposite spins.

Reason: The Pauli Exclusion Principle states that no two electrons in an atom can have the same set of four quantum numbers

- a. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.
- b. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion.
- c. Assertion is correct, but reason is a wrong statement.
- d. Assertion is wrong, but reason is a correct statement.
- 12. Assertion: The angular momentum of an electron in a hydrogen atom is quantized.

Reason: According to Bohr's model, the angular momentum of an electron is an integral multiple of $nh/2\pi$.

- a. Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.
- b. Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion.

c.Assertion is correct, but reason is a wrong statement. d.Assertion is wrong, but reason is a correct statement

2 Marks Questions

- 13. What are radial nodes, and how many radial nodes are present in the 3p orbital?
- 14. State Hund's Rule of Maximum Multiplicity and explain its significance in electronic configuration.
- 15. What is the significance of the principal quantum number (*n*) in determining the properties of an electron in an atom?
- 16. Explain why the electronic configuration 1s²2s²2p⁶3s²3p⁶3d⁹4s²does not represent a ground state configuration.

3 Marks Questions

- 17. Discuss the Heisenberg's uncertainty principle and its implications on the concept of definite paths for electrons.
- 18. How does the Pauli Exclusion Principle help in determining the electronic configuration of an atom?
- 19. Calculate the wavelength of an electron moving with a velocity of 2.5×10^6 m/s (Use mass of electron= 9.1×10^{-31} kg and h= 6.626×10^{-34} Js)
- 20. Calculate the uncertainty in the position of a particle with a mass of 1.0kg and an uncertainty in velocity of 0.1m/s. Use Heisenberg's uncertainty principle, where $h=6.626\times10^{-34}$ Js

5 Marks Questions

- 21.a. Calculate the energy change when an electron in a hydrogen atom transitions from the n=5 to the n=2 level.
- b. Differentiate between an atomic orbital and a Bohr orbit in terms of their descriptions of electron position.
- 22. Explain the concept of atomic orbitals and how they are determined by quantum numbers. Provide examples of how the quantum numbers *n*,*l*, and *ml* define specific orbitals.

Case study Questions

23. Read the given passage and answer the questions given below:

The de Broglie hypothesis proposed that particles can exhibit wave-like behaviour. The wavelength associated with a moving particle is given by $\lambda = h/mv$, where h is Planck's constant, m is the mass, and v is the velocity of the particle. The Heisenberg Uncertainty Principle states that it is impossible to simultaneously know both the position and momentum of a particle with absolute certainty. The principle can be expressed as $\Delta x \cdot \Delta p \ge h4\pi$ where Δx is the uncertainty in position and Δp is the uncertainty in momentum. Electrons in an atom are described by a set of four quantum numbers: principal (n), azimuthal (l), magnetic (ml), and spin (ms). The principal quantum number defines the energy level; the azimuthal quantum number defines the shape of the orbital; the magnetic quantum number defines the orientation; and the spin quantum number describes the electron's spin direction.

- 1. Calculate the de Broglie wavelength of a proton moving at 1×10^5 m/s. Assume the mass of a proton is 1.67×10^{-27} kg.
- 2. Which set of quantum numbers is not possible?

```
a. n=2, l=1, ml=0, m_s=+\frac{1}{2}
```

b.
$$n=3$$
, $l=2$, $ml=2$, $m_s=-\frac{1}{2}$

c.
$$n=3$$
, $l=3$, $ml=0$, $m_s=+\frac{1}{2}$

d. n=4,
$$l=0$$
, ml=0, m_s =+ $\frac{1}{2}$

- 3. If the uncertainty in the position of an electron is decreased, what happens to the uncertainty in its momentum?
 - a. It increases
 - b. It decreases
 - c. It remains the same
 - d. It becomes zero
- 4. What is the formula used to calculate the energy of a photon from its wavelength?

Answers

1.	b. $4l + 2$
2	c. 9
3.	c. By absorption of electromagnetic radiation of specific frequency
4.	d. Spin quantum number
5.	b. Total nodes = $n - 1$
6.	b. Subatomic particles
7.	c. 4d
8.	b. Azimuthal quantum number (<i>l</i>)
9.	a. n
10.	c.Electrons can exist between energy levels.

11.	a. Both assertion and reason are correct statements, and reason is the correct
	explanation of the assertion.

- a. Both assertion and reason are correct statements, and reason is the correct 12. explanation of the assertion.
- 13. Radial nodes are regions where the probability density of finding an electron is zero. The 3p orbital has 1 radial node.
- 14. Hund's Rule of Maximum Multiplicity states that for degenerate orbitals (orbitals with the same energy), electrons will fill each orbital singly before any orbital gets a second electron, and all singly occupied orbitals will have electrons with the same spin. This rule is significant because it minimizes electron-electron repulsions, leading to a more stable configuration with lower energy.
- 15. The principal quantum number (n) determines the energy level and size of an electron's orbital. It indicates the shell in which the electron resides, with higher *n* values corresponding to higher energy levels and larger orbitals. This quantum number is crucial for defining the electron's distance from the nucleus and its potential energy
- 16. In the ground state, electrons fill orbitals in order of increasing energy, following the Aufbau Principle. The correct ground state configuration would be $1s^22s^22p^63s^23p^64s^13d^{10}$
- 17. Heisenberg's uncertainty principle states that one cannot simultaneously know the exact position and momentum of an electron, implying that electrons do not have precise orbits.
- 18. The Pauli Exclusion Principle states that no two electrons can have the same set of four quantum numbers, ensuring unique electron configurations.

19.
$$\lambda = \frac{h}{m \cdot v}$$

$$\lambda = \frac{6.62\overline{6} \times 10^{-34}}{9.1 \times 10^{-31} \times 2.5 \times 10^{6}} = 2.9 \times 10^{-10} \text{ m}$$

20.
$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$$

$$\Delta x \ge \frac{6.626 \times 10^{-34}}{4\pi \times 0.1} = 5.3 \times 10^{-34} \text{ m}$$

a. $\Delta E = -2.18 \times 10^{-18} (1/5^2 - 1/2^2) = 45.78 \times 10^{-20} \text{ J}$

21. a.
$$\Delta E$$
=-2.18×10⁻¹⁸(1/5² - 1/2²)= 45.78x10⁻²⁰ J

- b. An atomic orbital is a region in space where there is a high probability of finding an electron, described by wavefunctions and quantum mechanics. A Bohr orbit, in contrast, is a fixed circular path at a certain distance from the nucleus, as proposed by Bohr's model. Atomic orbitals provide a more accurate representation of electron behaviour.
- 22. Atomic Orbitals: Atomic orbitals are regions in an atom where there is a high probability of finding electrons. They are solutions to the Schrödinger equation for electrons in atoms and describe the spatial distribution of electrons. Quantum Numbers:

Principal Quantum Number (n): Determines the energy level and size of the orbital. Higher n values correspond to higher energy levels and larger orbitals. For example, n=1 for the first energy level, n=2for the second, and so on.

Azimuthal Quantum Number (/): Determines the shape of the orbital. The value of I ranges from 0 to n-1. Each value of I corresponds to a specific type of orbital (0 = s, 1 = p, 2 = d, 3 = f). For example, l=0 for s orbitals, which are spherical. Magnetic Quantum Number (ml): Determines the orientation of the orbital in space. The value of ml ranges from -l to +l. For example, for a p orbital (l=1), ml can be -1, 0, or +1, corresponding to the px, py, and pz orbitals. Examples: An electron with n=2, l=1, and ml=0 is in a 2p orbital oriented along the y-axis (assuming *ml*=0 corresponds to the *py* orbital in a particular coordinate system). An electron in the 3dxy orbital would have n=3, l=2, and a specific ml value corresponding to the xy plane. 1. $\lambda = 3.96 \times 10^{-12} \,\mathrm{m}$ 23. 2. c. n=3, l=3, ml=0, $ms=+\frac{1}{2}$ 3. a. It increases 4. $E=hc/\lambda$

Prepared by:	Checked by:
Ms Jenesha Joseph	HoD Science